University of Mohaghegh Ardabili , Hoseinpour.majid@uma.ac.ir
Abstract: (2614 Views)
Polymer electrolyte membranefuel cells (PEMFC) have been considered by researchers due to their high efficiency, low pollution, and high-power density in distributed generation systems. In this paper, the connected PEMFC fuel cell power recovery system with an LCL filter is evaluated in the harmonic Grid. LCL filters, despite their greater ability to attenuate harmonics, can lead to system resonance and instability. In this research, a transformer has been used to connect the fuel cell inverter to the Grid and its leakage inductance has been used as the inductor on the network side. Besides, for optimal resonance damping, and attenuation of current ripple caused by grids voltage harmonics, capacitor voltage through feedback control has been used. Complete control of capacitor voltage feedback includes proportional, derivative, and second-order components. In the proposed control scheme, the capacitor voltage derivative component opposes the capacitor current feedback due to identical and symmetrical loop gain. Therefore, both of them can be deleted. Thus, the capacitor current sensor is saved. Instead, the LCL filter resonance is damped by a proportional component and a second-order derivative of the capacitor voltage. A low-pass filter is also added to the second-order derivative in the controllable frequency range to ensure system stability. The simulation results of the PEMFC power recovery system in different conditions confirm the proper attenuation of the grid-connected inverter, the injection of current of suitable quality into the contaminated and harmonic grid, the stability, and the appropriate dynamic response of the proposed system.
Hosseinpour M, Sabetfar T. Capacitor Voltage Comprehensive Feedback Procedure for LCL-based Grid-Connected PEMFC Power Conditioning System in a Weak and Harmonics-polluted Network. Nonlinear Systems in Electrical Engineering 2022; 9 (1) : 5 URL: http://journals.sut.ac.ir/jnsee/article-1-413-en.html
نشریه سامانههای غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیههای «کمیته بینالمللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت میکند.