[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Publication Statistics::
List of Reviewers::
Social Networks::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 2 (3-2021) ::
2021, 7(2): 160-176 Back to browse issues page
Survey of using a cascoded inverter as a booster amplifier in a regulated cascode circuit for the low power optical receiver applications for 10Gb/s bit rates using 90nm CMOS technology
Mohammad Dehghanpour Farashah , Majid Pourahmadi * , Ali Mirvakili
Azad University of Yazd , Pourahmadi@iauyazd.ac.ir
Abstract:   (52956 Views)
In this paper, a low power and wideband Regulated Cascode (RGC)-based Transimpedance Amplifier (TIA) is presented to be used for the short range optical receiver systems. In this structure, input dominant parasitic capacitance is isolated by adding a cascoded inverter amplifier as a fully active feedback network in the booster of an RGC amplifier. As a result, a 6.4 GHz bandwidth is obtained at a lower power consumption. In addition, for eliminating the effect of output parasitic capacitance by resonating with an inductor and widening the bandwidth, an active inductive load is implemented at the output node of the proposed TIA circuit. Therefore, considering two main points of isolation of input parasitic capacitance effect and reduction of load parasitic capacitance effect, bandwidth is increased without using a high amount of power consumption. Based on the results simulated in HSPICE using 90 nm CMOS technology, the proposed TIA can reach the data bit rate of 10Gb/s. In addition, the proposed TIA consumes only 1.6mW of power, and has the gain of 40dBΩ across the 6.4 GHz of bandwidth.
Keywords: Transimpedance amplifier, cascoded inverter, regulated cascode amplifier, CMOS, optical receiver, low power, wide band
Full-Text [PDF 1080 kb]   (1561 Downloads)    
Type of Study: Research | Subject: Optical Electronics
Received: 2020/11/23 | Accepted: 2021/04/24 | Published: 2021/08/2
References
1. [1] Fields C., Tsen T., McGuire C., Yoon Y., Zehnder D., et al., “110GHz transimpedance Amplifier in InP-Hbt Technology for 100 Gbitethernrt”, IEEE Microwave and Wireless Components letters, 20, 465-467, 2010.
2. [2] Wu C., Sovero E., Massey B., “40GHz Transimpedance Amplifier with differential outputsusing InP-InGaAs hetrojunction bipolar transistors, IEEE Journal of Solid-state Ciruits, 38, 1518-1523, 2003.
3. [3] D. Chen, S. Yeh, X. Shi, M.A. Do, C.C. Boon, W.M. Lim, “Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission”, IEEE Transactions on Very Large Scale Integeratiobn (VLSI) System, Vol. 21, pp. 1516–1525, 2013.
4. [4] P. Andre, S. Jacobus, “Design of a high gain and power efficient optical receiver front-end in 0.13μm RF CMOS technology for 10Gbps applications”, Microw. Opt. Technol. Lett., Vol. 58, pp. 1499–1504, 2016.
5. [5] R.Soltanisarvestani, S. Zohoori, A. Soltanisarvestani, “A RGC-Based, Low-Power, CMOS Transimpedance Amplifier for 10Gb/s Optical Receivers”, International Journal of Electronics, 2019.
6. [6] Sackinger E., “Broadbadn Circuits for Optical Fiber Communications”, Wiley, 2002.
7. [7] Yuan F., “ Low Voltage CMOS current mode preamplifier: Analysis and design” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 53, No. 1, 26-39, 2007.
8. [8] Vanisri T., Toumazou C., “Integrated High Frequency low-noise Current Mode Optical Transimpedance Preamplifier: Theory and Practice”, IEEE J. Solid-State Circuits, Vol. 30, No. 6, 677-685, 1995.
9. [9] Park K., Oh W.S., Choi B., Han J., Park S.M., “A 4channel 12.5Gb/s common-gate transimpedance amplifier array for DVI/HDMI applications”, in proceeding of IEEE international symposium on Circuits and systems in New Orleans, 2192-2195, 2007.
10. [10] Shahdoost S., Medi A., Saniei N., “A 1.39pA/√Hz transimpedance amplifier for 2.5Gb/s optical communications”, IEEE International Symposium on Circuits and systems, 2889-2892, 2011.
11. [11] S. Zohoori, M. Dolatshahi, “A CMOS Low-Power Optical Front-End for 5Gbps Applications”, Fiber and Integrated Optics, Vol. 37, No. 1, pp. 37-56, 2018.
12. [12] S. Zohoori, M. Dolatshahi, M. Pourahmadi, M. Hajisafari, “An Inverter-Based, CMOS, Low-Power Optical Receiver Front-End”, Fiber and Integrated Optics, Vol. 38, No. 1, pp. 1-20, 2019
13. [13] S. Zohoori, M. Dolatshahi, M. Pourahmadi, M. Hajisafari, “A CMOS, Low-Power current-mirror-based Transimpedance Amplifier for 10Gbps optical communications”, Microelectronics Journal, Vol. 80, pp. 18-27, 2018.
14. [14] S. Zohoori, T. Shafiei, M. Dolatshahi, “A 274μW, Inductor-less, Active RGC-Based Transimpedance Amplifier Operating at 5Gbps”, 27th Iranian conference on electrical Engineering (ICEE2019), 2019.
15. [15] Lu. Zh., Yeo K.S., Lim W.M., Do M.A., Boon Ch., “Design of a CMOS Broadband Transimpedance Amplifier with Active Feedback”, IEEE Transactions on very large Scale Integration (VLSI), Vol. 18, No. 3, 2010.
16. [16] O. V. S. Rao, P. Mandal, “A new Current-mode receiver for high speed electrical/optical link”, International Journal of Electronics and Communications, Vol. 65, pp. 107-116, 2011.
17. [17] Y. Liang, R. Ding, Zh. Zhu, “A 9.1ENOB 200Ms/s Asynchronous SAR ADC with Hybrid Single Ended/Differential DAC in 55-nm CMOS for Image sensing Signals”, IEEE Sensors Joutnal, Vol. 18, Issue. 17, 2018.
18. [18] B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill, Singapore, 2001.
19. [19] Sagar Ray, “A 30–75 dBΩ 2.5 GHz 0.13-μm CMOS Receiver Front-End With Large Input Capacitance Tolerance for Short-Range Optical Communication”,IEEE Transactions on Circuits and Systems—i, regular papers, vol. 63, no. 9, september 2016.
20. [20] Chen D, Yeh S, Shi X, Do MA, Boon CC, Lim WM. Cross‐coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Trans Very Large Scale Integr VLSI Syst. 2013;21(8):1516‐1525.
21. [21] M. Rakideh, M. Seifouri, P. Amiri, “A folded cascode-based broadband transimpedance amplifier for optical communication”, Microelectronics Journals. Vol. 54, pp. 1–8, 2016.
22. [22] M. H. Taghavi, L. Belostotski, J.W. Haslett, P. Ahmadi, “10-Gb/s 0.13-μm CMOS inductor less modified-RGC transimpedance amplifier”, IEEE Transactions on Circuits and Systems, Vol. 62, pp. 1971–1980, 2015.
23. [23] S. Zohoori, M. Dolatshahi, “A low‐power CMOS transimpedance amplifier in 90‐nm technology for 5‐Gbps optical communication applications”, Int J Circ Theor Appl. 2018;1–14.
24. [24] R. Y. Chen, Z.Y. Yang, “CMOS transimpedance amplifier for gigabit-per-second optical wireless communications”, IEEE Transaction on Circuits and Systems II, Vol. 63, pp. 418–422, 2016.
25. [25] Huang T, Zhang Q, and Zhang W. A novel transimpedance amplifier for 10Gbit/s optical communication system. IEEE 9th International Conference on ASIC, ASICON, pp. 843–846, 2012.
26. [26] S. Zohoori, M. Dolatshahi, “An inductor-less, 10Gbps Trans-impedance Amplifier Operating at low supply-voltage”, 25th Iranian conference on electrical Engineering (ICEE2017), pp. 145-148, 2017.
27. [27] مهدی دولتشاهی، سید مهدی میرصانعی، مهرداد امیرخان دهکردی، سورنا ظهوری، "بررسی اضافه کردن یک فیدفوروارد فعال با رفتار سلفی به یک ساختار گیت مشترک به عنوان یک تقویت‌کننده امپدانس انتقالی برای کاربردهای مخابراتی پهن‌باند و کم‌مصرف"، نشریه سامانه های غیر خطی در مهندسی برق، دانشگاه صنعتی سهند، دوره 6، شماره 2، صفحه 32-50، 1399.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghanpour Farashah M, Pourahmadi M, Mirvakili A. Survey of using a cascoded inverter as a booster amplifier in a regulated cascode circuit for the low power optical receiver applications for 10Gb/s bit rates using 90nm CMOS technology. Nonlinear Systems in Electrical Engineering 2021; 7 (2) :160-176
URL: http://journals.sut.ac.ir/jnsee/article-1-362-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (3-2021) Back to browse issues page
سامانه های غیرخطی در مهندسی برق Journal of Nonlinear Systems in Electrical Engineering
نشریه سامانه‌های غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیه‌های «کمیته بین‌المللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت می‌کند.
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4657