:: دوره 10، شماره 1 - ( 1-1402 ) ::
جلد 10 شماره 1 صفحات 83-60 برگشت به فهرست نسخه ها
انتقال یادگیری از شبکه های عصبی کانولوشنال مبتنی بر رویکرد نوین تنظیم جزیی تکاملی برای طبقه بندی اصوات محیطی
حامد ریاضتی سرشت* ، کریم محمدی
دانشگاه علم و صنعت ایران ، h.riazati.s@gmail.com
چکیده:   (2213 مشاهده)
مسئله کمبود نمونه های آموزش یکی از چالش های اصلی در به کارگیری شبکه های عصبی کانولوشنال عمیق[1] برای طبقه بندی اصوات محیطی[2] است. یکی از رویکرد های مورد توجه برای مواجه با چالش مذکور، انتقال یادگیری[3] است که در آن مدلی از پیش آموزش دیده به روی دادگانی با ابعاد بزرگ[4]، به کابرد هدف با اعمال تنظیمات جزیی[5] تطبیق داده می شود. در این پژوهش، ما نشان می دهیم که در هر لایه همه نورون/کرنل ها تأثیر یکسانی در تشخیص نمونه های کلاس های مختلف ندارند، بلکه به ازای هر کلاس زیرگروهی خاص نقش اصلی و حیاتی را در طبقه بندی بازی می کند. از این رو و با توجه به وجود شباهت های زیاد بین برخی ازکلاس های مبدأ و هدف، پیشنهاد می کنیم که تمرکز تنظیمات جزیی در هر لایه تنها معطوف به زیرگروهی از نورون/کرنل ها شود که به شدت نیازمند تغییرات هستند و مسئول اصلی خطا در طبقه بندی نمونه های ورودی هستند، و باقی دست نخورده رها شوند. برای شناسایی زیرگروه های مذکور، یک مسئله یادگیری تو در تو طرح می کنیم و یک رویکرد تکاملی مؤثر برای حل آن پیشنهاد می کنیم. ارزیابی روش پیشنهادی بیانگر بهبود مطلق به اندازه 1.9% و 2.3% در دقت طبقه بندی[6] به ترتیب به روی دادگان های ESC-50 و DCASE-17 نسبت به روش مرسوم انتقال یادگیری است؛ بهبودی که بدون اضافه کردن داده جدید و تنها با بهره برداری مؤثرتر از دانش موجود در شبکه از پیش آموزش دیده بدست آمده است. همچنین، افزایش زمان آموزش به ازای روش تکاملی پیشنهادی کم و در حدود یک سوم زمان لازم برای آموزش شبکه از ابتدا[7]  برآورد شده است.
 
[1] Deep convolutional neural network
[2] Environmental sound classification
[3] Transfer learning
[4] Large-scale dataset
[5] Fine-tuning
[6] Classification accuracy
[7] Training from scratch
شماره‌ی مقاله: 3
واژه‌های کلیدی: یادگیری عمیق، شبکه های عصبی کانولوشنال، انتقال یادگیری، الگوریتم ژنتیک، طبقه بندی اصوات محیطی
متن کامل [PDF 10162 kb]   (558 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تشخیص الگو
دریافت: 1401/10/14 | پذیرش: 1401/11/18 | انتشار: 1402/9/21


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 1 - ( 1-1402 ) برگشت به فهرست نسخه ها