|
|
|
|
Search published articles |
|
|
Showing 2 results for Convolutional Neural Networks
Eng. Faranak Shamsafar, Prof. Hossein Ebrahimnezhad, Volume 5, Issue 1 (2-2019)
Abstract
3D human pose estimation is one of the most significant tasks in computer vision with wide range of applications. The works for estimating human pose initialized from 2D skeletal estimation from multiple data and has proceeded toward 3D skeletal estimation from minimum input information. In this paper, 3D human pose estimation from a single RGB image is investigated. The proposed work is considered as the ones which firstly estimate 2D pose and then lift the estimated 2D configuration to 3D space. Since most of the errors in this attitude are originated by inaccurate 2D pose inference, we have proposed a method for predicting more accurate 2D poses to obtain 3D poses with less errors. The proposed approach for estimating 2D pose has leveraged deep learning along with the information of the edge map. In other words, we have made use of edge features, which are hand-designed features, in order to guide the deep neural network in training and in learning the features in accordance with the defined objective. Experimental results have demonstrated less errors in 2D and consequently 3D pose estimation in Human3.6M and HumanEva-I benchmarks.
Hamed Riazati Seresht, Dr. Karim Mohammadi, Volume 10, Issue 1 (3-2023)
Abstract
Insufficient training data is one of the main challenges of utilizing deep Convolutional Neural Networks (CNNs) for Environmental Sound Classification (ESC). As a promising solution, Transfer Learning (TL) has addressed this issue by adapting a network pre-trained on a large-scale dataset to the target task. In this paper, we demonstrate that not all neurons/kernels of every layer in CNN networks are equally utilized to process the inputs of different classes, but there is a specific subgroups of neurons/kernels in every layer that play the key role in classification of every output class. Based on this observation and due to similarities that exist between feature spaces of some source and target classes, we propose to concentrate the fine-tuning process only on those neurons/kernels that do need changes and have the greatest impact on misclassifying target data. To identify these neurons/kernels, we pose a nested optimization problem for which we propose an effective evolutionary approach as solution. Compared to the conventional fine-tuning approach, our proposed method achieves absolute improvements of about 1.9% and 2.3% in accuracy on ESC-50 and DCASE-17, respectively; remarkable improvements produced not by adding augmented data but with a more efficient utilization of knowledge stored in the pre-trained network. It is noteworthy that the computation time overhead of the proposed evolutionary method is rather small (about one third of the time required to train the model from scratch.
|
|
|
|
نشریه سامانههای غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیههای «کمیته بینالمللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت میکند. |
|
|
|