|
|
|
|
Search published articles |
|
|
Showing 2 results for Particle Swarm Optimization
Mr Mohammad Javad Amoshahy, Dr Mousa Shamsi, Dr Mohammad Hossein Sedaaghi, Volume 6, Issue 1 (1-2020)
Abstract
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and exploitation characteristics of PSO, this paper introduces computationally fast and efficient IPSO algorithms based on a novel class of exponential learning factors (ELF-PSO). This class contains time-varying exponential learning factors (TELF), random exponential learning factors (RELF), self-adjusting exponential learning factors (SELF) and linear-exponential learning factors (LELF) strategies. Experiment is performed and compared with a set of well-known constant, random, time-varying and adaptive learning factors strategies on a suite of nonlinear benchmark functions. The experimental results and statistical analysis prove that ELF-PSO algorithms are able to solve a wide range of difficult nonlinear optimization problems efficiently. Also these results show that the proposed methods outperform other algorithms in most cases.
, Dr Ali Bahrami, Volume 8, Issue 1 (9-2021)
Abstract
Since the introduction of the first silicon solar cell, there have been steady improvements in its performance parameters such as light trapping, solar absorption, cell efficiency and manufacturing costs. In thin silicon cells, some of the light photons that are not absorbed by the semiconductor are always lose in various ways. The diffraction grating causes the photons to travel a longer light path due to the collision with this structure, which increases the length of the light path of the photons and cell absorption, that thus improving cell efficiency. In each of the mentioned structures, optimal materials and geometric properties have been used to achieve maximum efficiency of silicon cells. Intelligent optimization methods have been used to find the optimal geometric parameters for the structure. In choosing search methods from the two algorithms particle swarm optimization and genetics and creating a combination of the both, the positive feature of both algorithms was used to achieve the best answer. This combination has produced very positive results, which thereby, 23.293 efficiencies and 35.41 mA/cm2 short circuit current were obtained.
|
|
|
|
نشریه سامانههای غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیههای «کمیته بینالمللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت میکند. |
|
|
|