|
|
|
|
جستجو در مقالات منتشر شده |
|
|
1 نتیجه برای طبقه بندی اصوات محیطی
حامد ریاضتی سرشت، دکتر کریم محمدی، دوره 10، شماره 1 - ( 1-1402 )
چکیده
مسئله کمبود نمونه های آموزش یکی از چالش های اصلی در به کارگیری شبکه های عصبی کانولوشنال عمیق برای طبقه بندی اصوات محیطی است. یکی از رویکرد های مورد توجه برای مواجه با چالش مذکور، انتقال یادگیری است که در آن مدلی از پیش آموزش دیده به روی دادگانی با ابعاد بزرگ، به کابرد هدف با اعمال تنظیمات جزیی تطبیق داده می شود. در این پژوهش، ما نشان می دهیم که در هر لایه همه نورون/کرنل ها تأثیر یکسانی در تشخیص نمونه های کلاس های مختلف ندارند، بلکه به ازای هر کلاس زیرگروهی خاص نقش اصلی و حیاتی را در طبقه بندی بازی می کند. از این رو و با توجه به وجود شباهت های زیاد بین برخی ازکلاس های مبدأ و هدف، پیشنهاد می کنیم که تمرکز تنظیمات جزیی در هر لایه تنها معطوف به زیرگروهی از نورون/کرنل ها شود که به شدت نیازمند تغییرات هستند و مسئول اصلی خطا در طبقه بندی نمونه های ورودی هستند، و باقی دست نخورده رها شوند. برای شناسایی زیرگروه های مذکور، یک مسئله یادگیری تو در تو طرح می کنیم و یک رویکرد تکاملی مؤثر برای حل آن پیشنهاد می کنیم. ارزیابی روش پیشنهادی بیانگر بهبود مطلق به اندازه 1.9% و 2.3% در دقت طبقه بندی به ترتیب به روی دادگان های ESC-50 و DCASE-17 نسبت به روش مرسوم انتقال یادگیری است؛ بهبودی که بدون اضافه کردن داده جدید و تنها با بهره برداری مؤثرتر از دانش موجود در شبکه از پیش آموزش دیده بدست آمده است. همچنین، افزایش زمان آموزش به ازای روش تکاملی پیشنهادی کم و در حدود یک سوم زمان لازم برای آموزش شبکه از ابتدا برآورد شده است.
Deep convolutional neural network
Environmental sound classification
|
|
|
|
نشریه سامانههای غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیههای «کمیته بینالمللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت میکند. |
|
|
|