In this study a model reference rough-radial basis function neural network controller with feedback error learning for control of a class of nonlinear systems subject to unknown bounded uncertainty is proposed. The proposed controller in hybrid form includes the classic controller and rough- radial basis function neural network controller. Because of using the classic controller with the neural network controller, it is expected that the transient response is bounded. The weights of the output layer of the neural network controller are interval variables. Using an appropriate Lyapunov function, stable adaptation laws for these weights according to the output of the classic controller and based on stability are derived. To show the efficacy of the proposed controller, results of simulation that is applied to Duffing Oscillator and Genesio- Tesi are shown and results are compared with the results when simple model reference radial basis function neural network is used as the controller. The results show that the proposed method is more robust against uncertainty when it is compared to model reference radial basis function neural network controller. Also, using the proposed controller, synchronization of chaotic systems is performed. The results verified the effectiveness of the proposed controller.
Bahrami V, Mansouri M, Teshnehlab M. Control and Synchronization of a Class of Chaotic Systems by Using a Lyapunov Based Model Reference Rough-RBF Neural Network Controller with Feedback Error Learning. Nonlinear Systems in Electrical Engineering 2015; 3 (1) :22-49 URL: http://journals.sut.ac.ir/jnsee/article-1-106-en.html
نشریه سامانههای غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیههای «کمیته بینالمللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت میکند.