تخمین حالت سه بعدی انسان یکی از مسائل پراهمیت و پرکاربرد در بینایی ماشین است. تخمین حالت انسان، از اسکلت دو بعدی و با استفاده از اطلاعات چندگانه آغاز و طی یک روند تکاملی، به تخمین اسکلت سه بعدی با بهرهگیری از حداقل اطلاعات ورودی سوق یافته است. در این مقاله، مسئلهی تخمین حالت سه بعدی انسان با استفاده از اطلاعات یک تصویر رنگی بررسی شده است. روش پیشنهادی جزء آن دسته از روشهایی محسوب میشود که ابتدا حالت دو بعدی را استخراج و سپس، با ارتقاء حالت دو بعدی تخمینی به فضای سه بعدی، حالت سه بعدی پیشبینی میشود. به دلیل آنکه در این نوع روشها، منشاء بیشتر خطاها ناشی از تخمین نادرست حالت دو بعدی است، در این مقاله، با ارائهی روشی برای تخمین دقیقتری از حالت دو بعدی، خطای کمتری برای حالت سه بعدی به دست آمده است. روش پیشنهادی برای تخمین حالت دو بعدی، از یادگیری عمیق و اطلاعات نقشهی لبه بهره برده است. به عبارتی دیگر، در این مقاله از ویژگی لبه که یک ویژگی طراحی شده است، برای هدایت یادگیری شبکهی عصبی عمیق و یادگیری ویژگیها در راستای هدف تعیین شده، استفاده شده است. آزمایشهای انجام شده نشان میدهد که روش پیشنهادی به خطای کمتری در تخمین حالت دو بعدی و متعاقباً، به خطای کمتری در پیشبینی حالت سه بعدی تصاویر پایگاه دادهی Human3.6Mو HumanEva-Iمنجر شده است.
shamsafar F, ebrahimnezhad H. Three-Dimensional Human Pose Estimation from a Single Image Using Non-linear Convolutional Neural Network Based on Shape Information. Nonlinear Systems in Electrical Engineering 2019; 5 (1) :83-103 URL: http://journals.sut.ac.ir/jnsee/article-1-179-fa.html
شمسافر فرانک، ابراهیم نژاد حسین. تخمین حالت سه بعدی انسان از تک تصویر با استفاده از شبکهی عصبی غیرخطی کانولوشنی مبتنی بر اطلاعات شکل. سامانه های غیر خطی در مهندسی برق. 1397; 5 (1) :83-103
نشریه سامانههای غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیههای «کمیته بینالمللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت میکند.