An Observer Based Robust Fault Estimation for a Class of Nonlinear System
|
Elham Tavasolipour , Javad Poshtan * |
Iran University of Science and Technology |
|
Abstract: (25031 Views) |
In this paper an observer-based robust fault estimation scheme is proposed for a special class of Lipchitz nonlinear systems where the disturbances and faults are assumed to be coupled with the main system states. In the considered model of system, fault is assumed to enter both of the state and output equations as an unmeasured nonlinear function and coupled with the states. The disturbances and the uncertainties are considered as nonlinear functions coupled with the states. To the best of the authors’ knowledge these conditions have not been previously considered in related papers. In the proposed approach, a Luenberger observer is designed for the estimation of faults and states of system simultaneously. The effect of system disturbances is attenuated with the L2 norm. The necessary conditions for the existence of such observer is expressed in the form of Linear Matrix Inequality. The Lipchitz constant of the nonlinear function is obtained by solving the proposed Linear Matrix Inequality. Finally, the performance of the proposed method is simulated on a three-phase induction motor. The results indicate good performance of the proposed method.
|
|
Keywords: Robust Fault Estimation, Luenberger Observer, Linear Matrix Inequality, lipschitz nonlinear systems |
|
Full-Text [PDF 1324 kb]
(2444 Downloads)
|
Type of Study: Research |
Subject:
Fault Detection and Isolation (FDI) Received: 2019/05/1 | Accepted: 2021/01/26 | Published: 2021/08/2
|
|
|
|
|
Add your comments about this article |
|
|