[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Publication Statistics::
List of Reviewers::
Social Networks::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 2, Issue 1 (6-2014) ::
2014, 2(1): 59-80 Back to browse issues page
Noisy Blind Source Signal Separation Based on Nonlinear Autocorrelation Using LMS Algorithms In DWT Domain
Abstract:   (18179 Views)
Blind source separation is the technique that anyone can separate the original signals from their mixtures without any knowledge about the mixing process, but using some statistical properties of original source signals. Independent component analysis is a statistical method expressed as a set of multidimensional observations that are combinations of unknown variables which are assumed to be statistically independent with respect to each other. In this paper we will use the nonlinear autcorrelation function as an object function to separate the source signals from the noisy mixing signals. Also we apply the wavelet transform in our proposed algorithm. Maximization of the object function in wavelet domain using the LMS algorithm will be obtained the coefficients of a linear filter which separate the source signals with high SNR. To calculate the performance of the proposed algorithm, two parameters of Performance Index and Signal to Noise and Interference Ratio will be used. To test the proposed algorithm, we will use Inovation Gaussian signals, Speech signals and ECG signals. Finally level of wavelet decomposition effects will be consider on the obtained results. It will be shown that the proposed algorithm gives better results than the other methods such as NoisyNA method that has been proposed by Shi.
Keywords: BSS, ICA, Nonlinear Autocorrelation Function, LMS Algorithm, Speech Signal Processing, Electrocardiogram Signals, Discrete Wavelet Transform, NoisyNA
Full-Text [PDF 758 kb]   (2437 Downloads)    
Type of Study: Research |
Received: 2013/05/25 | Accepted: 2014/01/25 | Published: 2014/06/16
Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noisy Blind Source Signal Separation Based on Nonlinear Autocorrelation Using LMS Algorithms In DWT Domain. Nonlinear Systems in Electrical Engineering 2014; 2 (1) :59-80
URL: http://journals.sut.ac.ir/jnsee/article-1-41-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 2, Issue 1 (6-2014) Back to browse issues page
سامانه های غیرخطی در مهندسی برق Journal of Nonlinear Systems in Electrical Engineering
نشریه سامانه‌های غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیه‌های «کمیته بین‌المللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت می‌کند.
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4657