[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
آمار نشریه::
فهرست داوران::
شبکه‌ های اجتماعی::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 5، شماره 1 - ( جلد 5 - شماره 1 1397 ) ::
جلد 5 شماره 1 صفحات 103-83 برگشت به فهرست نسخه ها
تخمین حالت سه بعدی انسان از تک تصویر با استفاده از شبکه‌ی عصبی غیرخطی کانولوشنی مبتنی بر اطلاعات شکل
فرانک شمسافر ، حسین ابراهیم نژاد*
دانشگاه صنعتی سهند ، ebrahimnezhad@sut.ac.ir
چکیده:   (10416 مشاهده)

 تخمین حالت سه بعدی انسان یکی از مسائل پراهمیت و پرکاربرد در بینایی ماشین است. تخمین حالت انسان، از اسکلت دو بعدی و با استفاده از اطلاعات چندگانه آغاز و طی یک روند تکاملی، به تخمین اسکلت سه بعدی با بهره‌گیری از حداقل اطلاعات ورودی سوق یافته است. در این مقاله، مسئله‌ی تخمین حالت سه بعدی انسان با استفاده از اطلاعات یک تصویر رنگی بررسی شده است. روش پیشنهادی جزء آن دسته از روش‌هایی محسوب می‌شود که ابتدا حالت دو بعدی را استخراج و سپس، با ارتقاء حالت دو بعدی تخمینی به فضای سه بعدی، حالت سه بعدی پیش‌بینی می‌شود. به دلیل آن‌که در این نوع روش‌ها، منشاء بیشتر خطاها ناشی از تخمین نادرست حالت دو بعدی است، در این مقاله، با ارائه‌‌ی روشی برای تخمین دقیق‌تری از حالت دو بعدی، خطای کمتری برای حالت سه بعدی به دست آمده است. روش پیشنهادی برای تخمین حالت دو بعدی، از یادگیری عمیق و اطلاعات نقشه‌ی لبه بهره برده است. به عبارتی دیگر، در این مقاله از ویژگی لبه که یک ویژگی طراحی شده است، برای هدایت یادگیری شبکه‌ی عصبی عمیق و یادگیری ویژگی‌ها در راستای هدف تعیین شده، استفاده شده است. آزمایش‌های انجام شده نشان می‌دهد که روش پیشنهادی به خطای کمتری در تخمین حالت دو بعدی و متعاقباً، به خطای کمتری در پیش‌بینی حالت سه بعدی تصاویر پایگاه داده‌ی Human3.6M و HumanEva-I منجر شده است.

واژه‌های کلیدی: تخمین حالت انسان، یادگیری عمیق، شبکه‌های عصبی کانولوشنی، نقشه‌ی لبه
متن کامل [PDF 2014 kb]   (2416 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بینایی ماشین
دریافت: 1396/11/16 | پذیرش: 1397/5/17 | انتشار: 1397/11/8
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

shamsafar F, ebrahimnezhad H. Three-Dimensional Human Pose Estimation from a Single Image Using Non-linear Convolutional Neural Network Based on Shape Information. Nonlinear Systems in Electrical Engineering 2019; 5 (1) :83-103
URL: http://journals.sut.ac.ir/jnsee/article-1-179-fa.html

شمسافر فرانک، ابراهیم نژاد حسین. تخمین حالت سه بعدی انسان از تک تصویر با استفاده از شبکه‌ی عصبی غیرخطی کانولوشنی مبتنی بر اطلاعات شکل. سامانه های غیر خطی در مهندسی برق. 1397; 5 (1) :83-103

URL: http://journals.sut.ac.ir/jnsee/article-1-179-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 5، شماره 1 - ( جلد 5 - شماره 1 1397 ) برگشت به فهرست نسخه ها
سامانه های غیرخطی در مهندسی برق Journal of Nonlinear Systems in Electrical Engineering
نشریه سامانه‌های غیرخطی در مهندسی برق در خصوص اصول اخلاقی انتشار مقاله، از توصیه‌های «کمیته بین‌المللی اخلاق نشر» موسوم به COPE و «منشور و موازین اخلاق پژوهش» مصوب معاونت پژوهش و فناوری وزارت علوم، تحقیقات و فناوری تبعیت می‌کند.
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4657